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SUMMARY 
A set of two-dimensional subsonic flows past certain cylinders 

is obtained using hodograph methods, in which the true 
pressure-volume relationship is replaced by various straight-line 
approximations. It is found that the approximation obtained by 
a least-squares method possibly gives best results. Comparison 
is made with values obtained by using the von Khrmhn-Tsien 
approximation and also with results obtained by the variational 
approach of Lush & Cherry (1956). 

1. INTRODUCTION 
There are a number of ways available for finding the approximate 

steady two-dimensional flow past a fixed cylinder. One such method is 
the tangent-gas method proposed by Chaplygin and later extended by 
Tsien, which uses a tangent to the curve, pressure ( p )  vs volume (r i ) ,  as a 
representation of the true relationship. The  significance of this device 
is that the hodograph equations can be reduced to the Cauchy-Riemann 
differential equations. Demtchenko (1932) considered a tangent at the 
point on the curve corresponding to the stagnation conditions, and as a 
result his theory can only be applied, with any accuracy, to flows with 
speeds up to about one-half sonic speed. Tsien (1939), on von Khrmhn’s 
suggestion, took the tangent at the point corresponding to conditions at 
infinity, assuming uniform flow there, and thus succeeded in extending 
the range of accuracy. These cases are only two examples of a set of flows 
obtainable by taking a tangent at each point of the ( p ,  v)-curve, or, more 
precisely, a series of straight-line approximations to the curve within the 
significant limits for the particular problem. 

A method is suggested for finding the particular line which possibly will 
yield the best results, and comparison is made with the accurate values 
obtained by Lush & Cherry (1956), using a variational method, for the 
adiabatic flow past a circular cylinder. 

2. EQUATIONS OF MOTION 

p = a-b2v 
Assume 
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as the straight-line approximation to the (p ,  v)-curve, which for illustration 
may be taken to be the adiabatic relation 

(For convenience the stagnation pressure and density are taken as unity.) 
Since v = (p representing fluid density), Bernoulli's theorem 
immediately yields 

where q represents fluid speed such that v = 1 when q = 0. 

pvv = 1. 

qz = bZ(V2- l),  (2) 

If $ represents the velocity potential and $ the stream function, the 
hodograph equations are 

(3)  

where 9 is the angle the fluid velocity makes with a fixed direction. 

differential equations 

by using (2) ,  and setting 

Equations (3)  can be reduced immediately to the Cauchy-Riemann 

$u = - * o >  $8 = *d (4) 

= J (PlP)dP 

= log[Bq/{6 + (62 + q2)1'2}], (5 1 
where B is an arbitrary constant. 

From (4), ++i$ must be an analytic function of w-iO, that is to say, 
W =  $+i$ = f ( 6 ) ,  

with u = w + i0 and the over-bar representing a complex conjugate. 
If x , y  represent coordinates in the plane of flow, then quite simply 

dz = q-leio(d$ + ip-l  d$), x = x + iy, 
and, in particular, on a profile given by $ = constant, 

dz = q-leis dW. (6) 
Now the function f ( 6 )  will represent the flow of an incompressible 

fluid in a certain c-plane, so that 

where C is an arbitrary constant and Q, 0 are respectively the magnitude 
and angle of inclination of the velocity vector of the incompressible fluid 
in the <-plane. 

if the condition Q --f q as q -+ 0 is assumed, so that 

Equation (5) shows that 
Q = 26q/{6 + (b2 + q')"'), 

q = 4b2Q/(4b2 - Q2). 

(7 1 

(8) 
Assume the flow in the I;-plane to be uniform and parallel at infinity, 

and write W = Qm G(5), Qm being the fluid speed at infinity ; then 

F.M. 2 Q  
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and from (6) and (8), 

since dG = dG along the profile t+!~ = constant. 

3. PRESSURE AND DENSITY 

Let the straight line (1) be parallel to the tangent to the curve p v ~  = 1 
at the point (pl,vl). Then 

where c1 is the local sonic speed. This linear assumption yields 

so that b2 = c2p2 = C: p;. (10) 
Equation (2) now gives 

p2 = 1 - M 2 ,  

where M = q/c is the Mach number. This means that the density and 
pressure are given very simply in terms of M ,  and as p = 0 when M = 1, 
it appears that ( 1 1 )  will probably not be a good approximation near the 
critical velocity. 

It seems a reasonable assumption therefore to find only the fluid speed 
by this approximation method, and to use the correct adiabatic relations 

for pressure and density once q has been determined. 

4. BEST APPROXIMATION WHEN 7 = 1.4 
Obviously a set of flows can be constructed by taking values of b to 

correspond to tangents at various points on the ( p ,  2))-curve between the 
stagnation and critical conditions. Such a set has been calculated by taking 
tangents at points on the curve corresponding to Mach numbers 0, 0.1, 
0.2, ..., 1.0, and applied in each case to uniform flow past a circular cylinder 
of unit radius in the 5-plane, so that 

G(5) = 5 +  115. 
The Mach number at infinity in the x-plane is taken to be M ,  = 0.35, 

and since 

qm = 0.4091, when y has the value 1.4. 
Table 1 shows the thickness ratio of the corresponding cylinder in the 

z-plane, also the ratio qmax/qm, qmax being the maximum speed on the 
profile, which occurs at the points where thickness is greatest. An inspection 
of this table shows that although thickness ratio increases with M ,  

q2 = yM2/{1 + $ ( y -  l ) M 2 } ,  



Tangent-gas approximation for steady flow 603 

4max/qrn increases even more quickly, so that it is reasonable to suppose 
that for any given thickness ratio, the value of 4max/qm is too small if the 
tangent corresponding to M = 0 is taken and too large if the tangent 
corresponding to M = 1 is used. The problem is now to select the ‘best ’ 
tangent, or in effect the best value of b2, since only the slope of the 

M 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

b2 

1.400 
1.383 
1.3 34 
1.257 
1.144 
1.044 
0.9224 
0.7989 
0.6797 
0.5798 
0.4687 

Q, 
~ 

0.3975 
0.3974 
0.3970 
0.3964 
0.3953 
0.3941 
0.3921 
0.3894 
0.3865 
0.3832 
0.3779 

Thickness 
ratio 

1.041 
1 a041 
1.042 
1.045 
1.050 
1.055 
1.062 
1.072 
1.086 
1.101 
1.127 

qrnax/qrn 

2.191 
2.194 
2.201 
2.215 
2.239 
2.262 
2.300 
2.351 
2.423 
2.508 
2.663 

Table 1. Thickness ratio and qmax/qm for various tangent approximations with y = 1 4- 
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Figure 1. Approximation to (p, +curve. 
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straight-line approximation occurs in the results. Tsien (1939) chose the 
tangent at the point on the ( p ,  u)-curve corresponding to the conditions at 
infinity, and it appears that the speeds obtained by this assumption are too 
small. It is suggested here that the value of b2 should be taken to 
correspond to the best straight-line fit to the ( p ,  a)-curve, found, say, by the 
method of least squares, between the significant limits for the particular 
problem under consideration. For example, it is found by using the 
least-squares method over 11 points between the stagnation and critical 
points, that the best straight-line fit over this range corresponds to 
a = 1.7544, b2 = 0.7982. This is shown in figure 1. 

5. CIRCULAR CYLINDER 

In order to test the accuracy of this method, the compressible flow, 
uniform at infinity, past a circular cylinder of thickness ratio unity is 
considered, and comparison made with the accurate results obtained by 
Lush & Cherry (1956). 

t 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

x 

4.325 
4.247 
4-022 
3.661 
3.191 
2.643 
2.028 
1.370 
0.692 
0 

Y 

0 
0.81 1 
1 *590 
2.298 
2.915 
3.423 
3.820 
4.103 
4.270 
4.325 

9l9m 

0 
0.3424 
0.6846 
1.0231 
1.3516 
1.6589 
1.9271 
2:1378 
2.2716 
2.3181 

4.325 
4.324 
4.325 
4.322 
4.322 
4.325 
4.325 
4.326 
4.326 
4-325 

‘Table 2. Coordinates and fluid speed for a nearly circular cylinder at film = 0.4. 

T o  obtain such a flow in the x-plane, the uniform flow past an elliptic 
,cylinder in the incompressible plane is considered, represented by 

where 5 = 5’+ lib’ ; the profile is given by 5’ = a6. This is substituted 
in (9), from which it is found on integrating and separating into real and 
imaginary parts, 

G(5) = 5’+a2/5’, 

(a2 - 1)2 + 4a2 sin2 t 
(a2+2acost+ 1 ) 2  

a(l+a2)cost+i(a2-1)210g 

with 
(13) 

h = Q2,/4b2. 
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The semi-axes of the resulting cylinder can be found by setting t equal 
to 0 and +n in (13), and the ratio of these gives the thickness ratio 6 as 

2 .0  

‘t/ 

I/ - - Preicnt  lArthod 

_ _  _ _  Korrnan-Tsicn . Lush & C h e r r y  5 ,  
- 

,’ - 

Figure 2. q/qm plotted against tan--’(y/x) for circular profile at M ,  = 0.4.. 
Comparison is shown with the von K6rmhn-Tsien approximation and 
Lush & Cherry’s S, result. 

If now Ma = 0.4, then q, = 0.4659, Q, = 0.4380, and, by employing 
the best straight-line fit previously found with h2 = 0.7982, h takes the 
value 0.0601. Using this value of A, it is found that when a2 = 24.00, 
6 = 1 to four significant figures. Table 2 shows coordinates, calculated 
from (13), and fluid speeds on the profile for various values of t .  This table 
shows that the profile is almost circular, the error in radius being nowhere 
greater than 0.1 ”,. 
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Figure 2 shows the graph of q/qm plotted against tan-'(y/x). From 
this an interesting comparison can be made with the results obtained by 
Lush & Cherry, and in particular with their S, approximation. Comparison 
is also made with a similar approach using the von Kirmin-Tsien method. 
Agreement with Lush & Cherry is extremely good, although it must be 
observed that they use y = 1.405. 

It would therefore appear that by this means of approximation a very 
accurate result can be obtained, at least for flow past cylinders with 
elliptic-type cross-section. Unfortunately there are very few solutions 
that are known to be sufficiently accurate for further comparison to be made. 

One of the authors (P. S.) wishes to acknowledge the receipt of a 
maintenance grant from the Department of Scientific and Industrial 
Research. 
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